Measles vaccination has formed part of the European childhood vaccina－ tion programmes for more than 20 years，but the disease，nevertheless， remains a public health challenge． Occurrence and outbreaks of mea－ sles in several European countries in the 2006－08 period raises the ques－ tion of the feasibility of the World Health Organisation＇s（WHO＇s）ob－ jective of eliminating measles in Europe by the end of 2010.

Status in Europe

The European surveillance of mea－ sles and other childhood vaccine－ preventable diseases are coordinated by EUVAC．NET，EPI－NEWS 3／07． In 2006 and 2007 there were 8,223 and 3，909 cases，respectively，in the 32 countries which comprise the network，Figure 1. 85% of all recorded cases occurred in five countries：Romania，Germany， Great Britain，Switzerland and Italy． Preliminary data for 2008 show a to－ tal of 7,804 cases，www．euvac．net． Romania regained control in 2007－8， but in addition to the four remaining countries， 2008 also saw an increase in France and Austria．
In 2006－7，the measles occurrence was highest among children ≤ 5 years of age，but nearly one in every five cases was ≥ 20 years old．The majority of the cases was unvacci－ nated（ 80% ）or had only received one measles vaccination．

The challenges

Insufficient coverage of the child－ hood vaccination programme is the primary problem in several European countries．The reasons are complex and varied．In some countries，the problems are caused by general challenges encountered by the pre－ ventive childhood vaccination pro－ grammes，particularly in relation to disadvantaged population groups． But systematic opposition to vaccina－ tion，EPI－NEWS 14／08，is probably also still of some importance．Fur－ thermore，outbreaks among popula－ tion groups with a specific ethnic，re－ ligious or philosophic background suggest a need to improve the dia－ logue with such groups to increase vaccination coverage．
One consequence of the insufficient vaccination coverage is that measles virus is exported from Europe to other continents and is spread be－ tween the European countries． In 2006－7， 56% of the 210 cases in－ fected in connection with travel abroad were infected in another

Figure 1．Measles in Europe 2006－2007，by country，incidence per 100，000

European country．Such cases fre－ quently become the index cases of additional outbreaks in the country of origin．

Measles in Denmark in 2008

In 2008 a total of 14 measles cases were notified：seven males and seven females．Three children were <15 months old，four were aged 2－4 years and seven adults were aged 23－39 years．All were unvaccinated with the exception of one adult who had been vaccinated twice．All ten patients，six children and four adults， were admitted to hospital in connec－ tion with the measles infection．No sequelae have been reported．
Five persons were infected abroad， of whom four caused another 11 Danish measles cases．
－A child was probably infected dur－ ing a vacation in an African country and subsequently infected another five children，including two who pre－ sented in 2009．All six patients had the B3 type of the disease．
－An adult was infected during a journey to Nepal／India and infected four persons with the D4 type of measles，EPI－NEWS 9／08．
－A child was infected with measles of type D5 in Switzerland，and sub－ sequently infected another child． －An adult was probably infected during a journey to China／Russia and possibly infected another adult： the two persons did not come into contact，but shared a possible infec－ tion time and place and the connec－ tion between the two cases was strengthened by the fact that both had the H1 type of the virus．
－An adult was presumably infected while travelling in Thailand，the vi－ rus type detected was D9；no further cases were reported．

Commentary

The occurrence of measles in some European countries remains exces－ sively high which entails an increa－ sed risk of infection spreading across national boundaries．Whether or not the WHO＇s objective to eliminate measles in Europe is fulfilled，it re－ mains essential to strive towards a consistently high vaccination cover－ age．In connection with travel abroad to measles endemic areas，the Dan－ ish recommendation is vaccination with MMR to previously unvacci－ nated children＞ 9 months and to adults who have not previously had the disease or been vaccinated，EPI－ NEWS 25／06．
In addition to the highly contagious nature of measles，the current situa－ tion is complicated by the fact that it also occurs among the adult popula－ tion and that infection may spread as the concerned persons make use of health care services，e．g．in waiting rooms and during the early parts of the care pathway before the diagno－ sis has been considered，as has been observed in e．g．Denmark．In 2008， to strengthen population immunity， among others，the second MMR vac－ cination was moved to the age of four years，EPI－NEWS 9／08．
（K．Mølbak，A．H．Christiansen，
S．Glismann，M．Muscat，Department of Epidemiology）

Individually notifiable diseases

Number of notifications received in the Department of Epidemiology, SSI (2009 figures are preliminary)

Table 1	Week 16 2009	$\begin{gathered} \text { Cum. } \\ 2009{ }^{1)} \end{gathered}$	$\begin{aligned} & \text { Cum. } \\ & 2008^{1)} \end{aligned}$
AIDS	1	8	12
Anthrax	0	0	0
Botulism	0	0	0
Cholera	0	0	0
Creutzfeldt-Jakob			
Diphtheria	0	0	0
Food-borne diseases of these, infected abroad	0	$\begin{array}{r} 117 \\ 23 \end{array}$	$\begin{aligned} & 85 \\ & 23 \end{aligned}$
Gonorrhoea	5	168	113
Haemorrhagic fever	0	0	0
Hepatitis A of these, infected abroad	0	5	$\begin{array}{r} 16 \\ 8 \end{array}$
Hepatitis B (acute)	0	9	5
Hepatitis B (chronic)	2	63	56
Hepatitis C (acute)	0	4	4
Hepatitis C (chronic)	7	114	122
HIV	2	80	70
Legionella pneumonia of these, infected abroad	1	34	$\begin{aligned} & 31 \\ & 12 \end{aligned}$
Leprosy	0	0	0
Leptospirosis	0	0	2
Measles	0	9	6
Meningococcal disease	1	27	24
of these, group B	0	15	11
of these, group C	1	9	4
of these, unspec. + other	0	3	9
Mumps	0	3	14
Neuroborreliosis	0	3	19
Ornithosis	0	0	1
Pertussis (children < 2 years)	0	36	33
Plague	0	0	0
Polio	0	0	0
Purulent meningitis			
Haemophilus influenzae	1	3	0
Listeria monocytogenes	0	2	1
Streptococcus pneumoniae	2	35	37
Other aethiology	1	5	12
Unknown aethiology	0	3	12
Under registration	0	13	-
Rabies	0	0	0
Rubella (congenital)	0	0	0
Rubella (during pregnancy)	0	0	0
Shigellosis	0	28	21
of these, infected abroad	0	26	19
Syphilis	5	80	34
Tetanus	0	0	0
Tuberculosis	1	118	122
Typhoid/paratyphoid fever	0	6	10
of these, infected abroad	0	3	8
Typhus exanthematicus	0	0	0
VTEC/HUS	0	32	37
of these, infected abroad	0	8	12

Selected laboratory diagnosed infections

Number of specimens, isolates, and/or notifications received in SSI laboratories

Table 2	Week 16 2009	$\begin{gathered} \text { Cum. } \\ 2009^{2)} \end{gathered}$	$\begin{gathered} \text { Cum. } \\ 2008{ }^{2)} \end{gathered}$
Bordetella pertussis (all ages)	2	45	40
Gonococci of these, females of these, males	$\begin{array}{r} 15 \\ 3 \\ 12 \end{array}$	$\begin{array}{r} 129 \\ 30 \\ 99 \end{array}$	$\begin{array}{r} 116 \\ 24 \\ 92 \end{array}$
Listeria monocytogenes	0	16	15
$\begin{aligned} & \text { Mycoplasma pneumoniae } \\ & \text { Resp. specimens }^{31} \\ & \text { Serum specimens }{ }^{4)} \\ & \hline \end{aligned}$			
Streptococci ${ }^{5}$ Group A streptococci Group B streptococci Group C streptococci Group G streptococci S. pneumoniae	$\begin{array}{r} 9 \\ 3 \\ 2 \\ 9 \\ 30 \\ \hline \end{array}$	$\begin{array}{r} 69 \\ 30 \\ 10 \\ 51 \\ 510 \\ \hline \end{array}$	$\begin{array}{r} 48 \\ 31 \\ 4 \\ 36 \\ 429 \\ \hline \end{array}$
Table 3	$\begin{gathered} \text { Week } 14 \\ 2009 \end{gathered}$	$\begin{gathered} \text { Cum. } \\ 2009^{2)} \end{gathered}$	$\begin{gathered} \text { Cum. } \\ 2008{ }^{2)} \end{gathered}$
MRSA	8	195	150
Pathogenic int. bacteria ${ }^{6)}$ Campylobacter S. Enteritidis S. Typhimurium Other zoon. salmonella Yersinia enterocolitica Verocytotoxin- producing E. coli Enteropathogenic E. coli Enterotoxigenic E. coli	$\begin{array}{r} 29 \\ 7 \\ 17 \\ 7 \\ 4 \\ \\ 1 \\ 2 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} 434 \\ 62 \\ 250 \\ 174 \\ 52 \\ \\ 31 \\ 37 \\ 61 \end{array}$	$\begin{array}{r} 459 \\ 73 \\ 119 \\ 202 \\ 65 \\ \\ 32 \\ 22 \\ 80 \end{array}$

${ }^{2)}$ Cumulative number 2009 and in corresponding period 2008
${ }^{3)}$ Resp. specimens with positive $P C R$
${ }^{4)}$ Serum specimens with pos. complement fixation test
${ }^{5)}$ Isolated in blood or spinal fluid
${ }^{6)}$ See also www.germ.dk
Sentinel surveillance of the influenza activity
Weekly percentage of consultations, 2007/2008/2009

Sentinel:

Alert threshold: Possible incipient epidemic

Basal curve: Expected frequency of consultations under non-epidemic conditions
Influenza consultations as percentage of total consultations)

