EPI-NEWS

NATIONAL SURVEILLANCE OF COMMUNICABLE DISEASES

Editor: Susanne Samuelsson Dept. of Epidemiology Statens Serum Institut • 5 Artillerivej • DK 2300 Copenhagen S

Tel.: +45 3268 3268 • Fax: +45 3268 3874 www.ssi.dk • epinews@ssi.dk • ISSN: 1396-4798

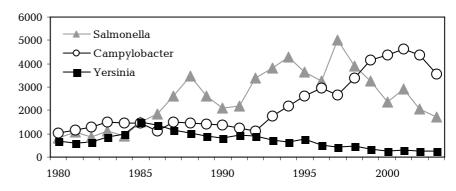
ZOONOTIC ENTERIC INFECTIONS 2003

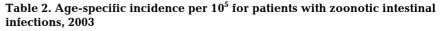
No. 9, 2004

Zoonoses are diseases which are transmitted from animals to humans. Zoonotic enteric infections arise after consumption of contaminated foodstuffs or water, or after contact with infected animals.

General development

Since 1999, Campylobacter jejuni/ coli has been the most common bacterial zoonosis. In the laboratory notification system, 3542 cases (66 per 10^5) were recorded in 2003. The number increased continuously from 1992 to 2001, but decreased by 5% in 2002 and by 19% in 2003 relative to the previous year, <u>fig. 1</u>.


Apart from a minor increase in 2001, the incidence of Salmonella has been declining since 1997. In 2003, a total of 1724 cases were registered (32 per 10⁵), 17% less than in 2002, which is the lowest number since 1985. The overall figure constitutes a 33% decline for S. Enteritidis, an 18% increase for S. Typhimurium and an 8% decline for the group of other serotypes. S. Enteritidis, which is primarily transmitted from hen's eggs, is still the most common serotype, table 1.


The incidence of S. Typhimurium, which is primarily transmitted from pork and poultry, is approaching that for S. Enteritidis. The increased number of S. Typhimurium cases in 2003 is partially due to a large outbreak (40 cases) arising in a restaurant in the summer of 2003, EPI-NEWS 42/03.

Tabel 1. Number of Salmonella episodes by serotype, 2003

Serotype	No.	(%)
S. Enteritidis	746	(43)
S. Typhimurium	455	(26)
S. Virchow	40	(2)
S. Agona	38	(2)
S. Dublin	34	(2)
S. Newport	27	(2)
S. Derby	26	(2)
S. Infantis	26	(2)
S. Stanley	26	(2)
S. Uganda	19	(1)
Other	287	(17)
Total	1724	(100)

A total of 245 cases of Yersinia enterocolitica were notified (4.5 per 10^5), which leaves the level unchanged since 2002. A total of 128 cases of verocytotoxin-producing E. coli (VTEC) were registered (2.4 per 10^5), a decrease of 11% relative to 2002. In 2003, 28 cases (22%) were caused by the O157 O group, which has traditionally been considered to be Fig. 1. Number of registered infections caused by Campylobacter, Salmonella and Yersinia enterocolitica, 1980-2003

Age	Campylo-	S. Ente- S. Typhi		Other	Yersinia	
(yrs)	bacter	ritidis	murium	salmonella	enterocolitica	VTEC
< 1	70	20	23	58	31	8
1-4	116	30	19	25	29	12
5-14	49	13	8	5	6	2
15-24	115	16	9	11	3	2
25-44	85	10	8	9	3	2
45-64	43	15	7	9	2	2
65+	28	12	7	7	2	1
Total	66	14	8	10	5	2

the most virulent. There were two notified cases of haemolytic uraemic syndrome (HUS) in 2003, and both patients had verified VTEC infections. The patients' age-specific incidence follows the pattern from the preceding years, <u>table 2</u>.

Comments

The main source of Campylobacter infections is thought to be poultry. The declining number of infections can probably be ascribed to efforts against Campylobacter in fresh poultry, which the poultry industry in collaboration with the Danish Veterinary and Food Administration has carried out during the last couple of years. In order to assess which measures have been particularly effective, it is vital that the industry and the authorities document this effort. Future surveillance will reveal whether the initiative may lead to a continued decline.

The incidence of salmonella has been declining since the record year of 1997. This propitious development may be ascribed to the great effort that has been made to combat salmonella in poultry and eggs, as well as in pork production. A five-fold decline in the incidence of S. Enteritidis is mainly due to the action plan to combat salmonella in consumer egg production, which must be considered a very successful preventive initiative.

Since registration commenced, this is the first time that the annual number of cases of VTEC has not increased. There are many routes of infection for VTEC, including contact with ruminant animals and their faeces, contact with other infected persons and a range of foodstuffs of bovine origin, such as unpasteurised milk. Since the laboratories' diagnostic practice is not uniform, VTEC is still underdiagnosed.

(S. Ethelberg, K.E. Olsen, F. Scheutz, Department of Bacteriology, Mycology and Parasitology, K. Mølbak, Department of Epidemiology)

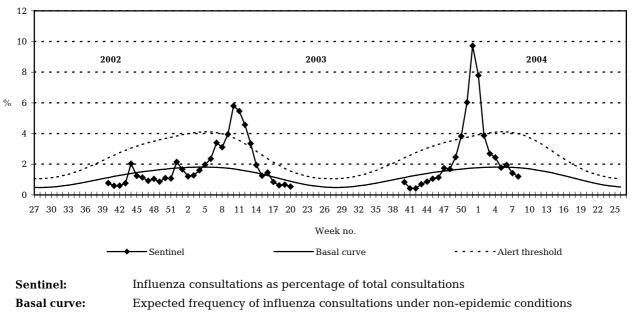
COUNSELLING OF PRIVATE INDIVIDUALS

The SSI is experiencing an increaseing number of enquiries from private individuals stating that their GP has referred them for counselling about travel vaccination or the like. The SSI does not normally provide counselling for private individuals. Counselling should take place via the patient's own GP or other health personnel, who in case of doubt or in-depth questions may contact the Institute. Answers to many questions may be found on www.ssi.dk. (Department of Epidemiology)

25 February 2004

Patients with confirmed Listeria monocytogenes infection

	4th quarter	4th quarter	Total	Total
	2003	2002	2003	2002
Mother/child infection	1	-	4	2
Septicaemia	4	4	19	19
Meningitis	-	-	4	5
Other	1 *	-	2	3
Total	6	4	29	29


4th quarter of 2003 compared with 4th quarter of 2002, and the total years of 2003 and 2002

* Pleuritis/peritonitis in patient with liver cirrhosis

(DBMP)

Sentinel surveillance of the influenza activity

Weekly percentage of consultations, 2002/2003/2004

Alert threshold: Possible incipient epidemic

(Dept. of Epidemiology)

	2003											2004																	
Week no.	44	45	46	47	48	49	50	51	52	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
No. received	0	5	6	12	9	10	23	28	15	10	19	9	8	5	0	11	22	1											\square
Influenza A												0	1			2	2												
A/H3				3	1	6	7	12	4	3	3	4	2																
A/H1																													
Influenza B																													

Secretion specimens received from the sentinel surveillance system

(Depts. of Epidemiology & Virology)